The Crystal Structure of $\mathrm{Ru}_{3} \mathrm{Be}_{17}{ }^{*}$

By Donald E. Sands \dagger, Quintin C. Johnson, Oscar H. Krikorian and Kurt L. Kromholtz \ddagger
Lawrence Radiation Laboratory, University of California, Livermore, California, U.S.A.

(Received 7 March 1962)
$\mathrm{Ru}_{3} \mathrm{Be}_{17}$ is body-centered cubic with $a=11.337 \AA$; there are eight formula units in the unit cell and the space group is Im3. A feature of the structure which is unusual for an intermetallic beryllide is the occurrence of a hole of radius $2 \cdot 81 \AA$ around the origin of the unit cell. Powder patterns show a corresponding isostructural osmium beryllide with $a=11.342 \AA$.

Introduction

Powder diffraction patterns of Ru -Be preparations showed a body-centered cubic phase of approximate composition RuBe_{6}. Single crystals of this phase were subsequently made. The determination of its crystal structure established its correct stoichiometry as $\mathrm{Ru}_{3} \mathrm{Be}_{17}$.

Experimental

Samples of $\mathrm{Ru}_{3} \mathrm{Be}_{17}$ were prepared from -50 mesh $99 \cdot 9 \%$ pure Ru powder and - 200 mesh 99% pure Be powder. The main impurity in the Be was oxygen. The powders were mixed in an atomic ratio of one Ru to six Be to make up 1 g . of sample. This mixture was reacted in a dense BeO crucible at $1480^{\circ} \mathrm{C}$. for 15 min . under $\frac{1}{2}$ atmosphere argon. An inductively heated Ta crucible was used as the furnace. The sample showed evidence of reaction, but not of melting. Two higher heatings were made in attempts to melt the sample. Melting was not indicated at $1530{ }^{\circ} \mathrm{C}$., but did occur at $1635{ }^{\circ} \mathrm{C}$. The resultant sample was crushed and single crystals were selected for the structural study.

Powder diffraction patterns taken with $\mathrm{Cu} K \alpha$ radiation ($\lambda K \alpha_{1}=1 \cdot 54050 \AA, \lambda K \alpha_{2}=1 \cdot 54434 \AA$) show that the material is body-centered cubic with

$$
a=11 \cdot 337 \pm 0 \cdot 005 \AA
$$

The first 17 lines of this pattern are listed in Table 1. Powder patterns show a corresponding isostructural osmium beryllide with $a=11 \cdot 342 \AA$. Oscillation and Weissenberg photographs of a single crystal of $\mathrm{Ru}_{3} \mathrm{Be}_{17}$ showed Laue symmetry Im3. The possible space groups, consistent with the diffraction effects, are $I 23, I 2_{1} 3$, and $I m 3$. The choice of the centrosymmetric space group, Im3, was ultimately confirmed by the structure determination.

[^0]| | bble | ow | n of R | ${ }_{17}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Phot | raphed
 In | ith sitie | iation, $\lambda=$
 d visually | 1.5418 | |
| d | $h k l$ | I | d | $h k l$ | I |
| $8 \cdot 1$ A | 110 | 10 | $2 \cdot 525$ § | 420 | 25 |
| 5.64 | 200 | 30 | $2 \cdot 408$ | 332 | 25 |
| 4.60 | 211 | 15 | $2 \cdot 308$ | 422 | 10 |
| $3 \cdot 99$ | 220 | 45 | $2 \cdot 219$ | ¢ 510 | 30 |
| 3.56 | 310 | 100 | $2 \cdot 062$ | 521 | 50 |
| $3 \cdot 25$ | 222 | 65 | 1.937 | ¢ 530 | 100 |
| 325 | 22 | 65 | 1.937 |) 433 | 100 |
| $3 \cdot 01$ | 321 | 100 | $1 \cdot 883$ | $\{442$ | 45 |
| 301 | 321 | 100 | 1.883 | (600 | 4.5 |
| $2 \cdot 82$ | $\{411$ | 25 | 1-832 | \{611 | 100 |
| $2 \cdot 82$ | $\{330$ | 2.5 | $1 \cdot 8.32$ | \{ 532 | 100 |

The intensities from an irregularly shaped single crystal of approximate dimensions $0.04 \times 0.06 \times 0.08$ mm . were measured with Mo $K x$ radiation on a General Electric XRD-5 X-ray spectrometer equipped with a single crystal orienter. The stationary crystalstationary counter technique was used, and 40 -sec. counts were taken at the calculated settings of all reflections with $2 \theta \leq 60^{\circ}$. Background corrections were obtained from a plot of intensity versus 0 made with the crystal out of reflecting position. The intensities of 506 reflections, of which 13 were not observable above background, were measured.

Structure determination

Preparations of intermetallic beryllides are generally microcrystalline. Establishing their stoichiometries by chemical analysis is complicated by the necessity for proving that the material is single phase and by the possibility that some of these compounds have extended homogencity ranges. The solution of the stoichiometry problem is usually based upon a combination of the structure determination and the assumption of the additivity of elemental volumes (e.g., Zalkin, Sands \& Krikorian, 1959). In the present case, the volume of the unit cell is $1457 \AA^{3}$, and the volume of 24 Ru atoms plus 140 Be atoms obtained from the elements ($13 \cdot 57 \AA^{3} / \mathrm{Ru}, 8 \cdot 105 \AA^{3} / \mathrm{Be}$) is 1460

Table 2. Observed and calculated structure factors, F_{o} and F_{c}, respectively
Asterisks denote unobserved reflection

Table 3. Atomic parameters of $\mathrm{Ru}_{3} \mathrm{Be}_{17}$

Atom	Position	x	y	z	B
Ru	$24(g)$	0	$0 \cdot 1879 \pm 0.0001$	$0.3014 \pm 0.000 \mathrm{I}$	$0 \cdot 2 \AA^{2}$
Be_{1}	48(h.)	$0 \cdot 2010 \pm 0 \cdot 0011$	$0 \cdot 1140 \pm 0 \cdot 0011$	$0 \cdot 3434 \pm 0 \cdot 0011$	$1 \cdot 1$
Be_{2}	$24(g)$	0	$0 \cdot 2305 \pm 0 \cdot 0015$	0.0914 ± 0.0015	$0 \cdot 9$
Be_{3}	$24(g)$	0	$0 \cdot 4055 \pm 0.0012$	$0 \cdot 3488 \pm 0 \cdot 0012$	$0 \cdot 2$
Be_{4}	$16(f)$	$0 \cdot 1645 \pm 0.0010$	$0 \cdot 1645 \pm 0 \cdot 00 \mathrm{I} 0$	$0 \cdot 1645 \pm 0.0010$	$0 \cdot 9$
Be_{5}	$12(\epsilon)$	$0 \cdot 1956 \pm 0.0017$	0	!	$0 \cdot 9$
Be_{6}	$12(d)$	$0 \cdot 4065 \pm 0 \cdot 0023$	0	${ }^{1}$	$1 \cdot 2$

\AA^{3}, suggesting the composition $\mathrm{Ru}_{6} \mathrm{Be}_{35}$ with four of these formula units per unit cell.

The 24 Ru atoms were found, by interpretation of the three-dimensional Patterson function, to occupy positions $24(g)$ of space group Im3: body-centering $\pm(0, y, \pm z ; z, 0, \pm y ; y, \pm z, 0)$ (International Tables for X-ray Crystallography, 1952), with $y=0 \cdot 19, z=0 \cdot 31$. The relationship, $y+z=\frac{1}{2}$, which these unrefined parameters obey, has been observed for the metalloid atoms in the isostructural compounds CoAs_{3} (Oftedal, 1928), CoSb_{3} (Rosenqvist, 1953), RhSb_{3} (Zhuravlev \& Zhdanov, 1956), and IrAs_{3} and IrSb_{3} (Kjekshus \& Pedersen, 1961). A consequence of this relationship is that no new vectors would be added to the vector set if an atom were placed at the origin. However, the magnitudes of the vectors would be changed, and quantitative consideration of the heights of the Patterson peaks shows that, in this case, there is no heavy atom at the origin and the above interpretation of the Patterson is, in fact, unique if the space group is $\operatorname{Im} 3$.

The contributions of the Ru atoms to the structure factors were computed, and the resulting signs were applied to the observed structure factors which were then used in calculating the three-dimensional Fourier synthesis. The positions of 136 beryllium atoms were obtained from this Fourier map. In terms of space group $\operatorname{Im} 3$ they are:
$48 \mathrm{Be}_{1}$ in $48(h): \pm(x, \pm y, \pm z ; z, \pm x, \pm y ; y, \pm z, \pm x)$

+ body-centering,
with $x=0 \cdot 20, y=0 \cdot 11, z=0 \cdot 34$,
$24 \mathrm{Be}_{2}$ in $24(g)$
$24 \mathrm{Be}_{3}$ in $24(g)$
$y=0 \cdot 23, z=0 \cdot 09$
$16 \mathrm{Be}_{4}$ in $16(f): \pm(x, \pm x, \pm x)+$ body-centering, with $x=0 \cdot 16$,
$12 \mathrm{Be}_{5}$ in $12(e): \quad \pm\left(x, 0, \frac{1}{2} ; \frac{1}{2}, x, 0 ; 0, \frac{1}{2}, x\right)+$ body centering, with $x=0 \cdot 20$,
$12 \mathrm{Be}_{6}$ in $\mathrm{I} 2(d): \quad \pm(x, 0,0 ; 0, x, 0 ; 0,0, x)+$ body centering, with $x=0 \cdot 40$.

The volume calculation predicted the presence of 140 Be atoms per unit cell. The 136 Be atoms found leave holes of radius $2.81 \AA$ around the $2(a)$ positions ($0,0,0 ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$). However, four atoms cannot be added to the structure without destroying the cubic symmetry. The possibility of placing a third of a Be atom in each of the $12(d)$ positions, with $x=0 \cdot 1$, was tested in the course of the least squares refinements. The temperature factors of these fractional atoms
increased rapidly, reaching $8.7 \AA^{2}$ after two cycles. Similar results occurred when Be atoms were placed in the $2(a)$ positions. Furthermore, the energy required to transfer a Be atom from the lattice to a hole of $2.81 \AA$ radius would be of the order of the energy necessary to vaporize the atom. Finally, a difference Fourier was computed after refinement of the 136 Be and 24 Ru atoms. The largest peak on this difference map corresponded to about $1 \cdot 5$ electrons near a Be_{4} atom; the next largest peaks amounted to only about $0 \cdot 5$ electron. The most negative region was at the origin. Since there are no other holes of sufficient size to accommodate additional atoms, the conclusion was reached that there are only 136 Be atoms per unit cell, and the formula of this phase is $\mathrm{Ru}_{3} \mathrm{Be}_{17}$.

The $\mathrm{Ru}_{3} \mathrm{Be}_{17}$ parameters were refined on an IBM 709 using the least squares program of Busing \& Levy (1959). Individual isotropic temperature factors for each atom were included in the refinements. Constant weighting factors were applied. The atomic scattering factors used were those of Thomas \& Umeda (1957) for Ru, and Ibers (1957) for Be. The final reliability factor, $R=\Sigma\left|F_{o}-F_{c_{i}} / \sum\right| F_{o} \mid$, was $0 \cdot(052$. Omitting the unobserved reflections, R was $0 \cdot 049$. The standard error of fit, $\left[\sum\left|F_{o}-F_{c}\right|^{2} /(m-n)\right]^{\frac{1}{2}}$, was $4.83 \quad(m=506$ was the number of observations, $n=20$ was the number of parameters being refined). The observed and calculated structure factors are listed in Table 2. The refined parameters are given in Table 3. The standard errors of the parameters were computed by Busing \& Levy's program.

Discussion

The nearest neighbor interatomic distances of $\mathrm{Ru}_{3} \mathrm{Be}_{17}$ are listed in Table 4. The standard deviations of these distances were computed by the method of Cruickshank \& Robertson (1953).

The point symmetry at a Ru atom is $\mathrm{C}_{s}-m$. Its neighbors include four Be_{1}, two Be_{2}, three Be_{3}, two Be_{4}, and one Be_{5} arranged at the vertices of a truncated tetrahedron. Four additional neighbors, consisting of two Be_{1} atoms at $2 \cdot 38 \AA$, one Be_{2} atom, and one Be_{6} atom, lie on the axes of the hexagonal faces of the truncated tetrahedron. This configuration about the heavy atom (Fig. 1) has also been observed in NbBe_{2} and NbBe_{3} (Sands, Zalkin \& Krikorian, 1959) and in ReBe_{22} (Sands, Johnson, Zalkin, Krikorian \& Kromholtz, 1962).

Table 4. Interatomic distances in $\mathrm{Ru}_{3} \mathrm{Be}_{17}$

Fig. 1. Nearest neighbors of Ru.
Each of the $\mathrm{Be}_{1}, \mathrm{Be}_{2}, \mathrm{Be}_{3}$, and Be_{4} atoms has six beryllium and three ruthenium neighbors arranged at the vertices of two octahedra sharing a face. The vertices of the shared face are in each case occupied by the ruthenium atoms. The Be_{3} atoms have three additional neighbors, consisting of one $\mathrm{Be}_{\overline{\bar{j}}}$ and two Be_{6} atoms, forming a triangle centered about $1.7 \AA$ from Be_{3} along the common axis of the octahedra. The Be_{1} environment also includes this extra triangle, in this case consisting of one Be_{1}, one Be_{5}, and one Be_{6} atom, but the distances from the central Be_{1}
atom to these atoms are $2 \cdot 72 \AA, 2 \cdot 20 \AA$, and $2 \cdot 59 \AA$, respectively.

The Be_{5} atoms occupy positions of point symmetry $C_{2 v}-m m$. Each Be_{5} is surrounded by a prism with quadrilateral bases. The sequence of atoms at the vertices of each base is $\mathrm{Be}_{1}-\mathrm{Be}_{6}-\mathrm{Be}_{1}-\mathrm{Be}_{3}$. The axis of the prism is bisected by a trapezoid whose vertices are occupied by the sequence $\mathrm{Be}_{3}-\mathrm{Be}_{3}-\mathrm{Ru}-\mathrm{Ru}$.

Fig. 2. Environment of two Be_{6} atoms.
The Be_{6} atoms occur in pairs. The environment of such a pair is shown in Fig. 2. The Be_{1} atoms in this picture serve only to complete the cage, the $\mathrm{Be}_{6}-\mathrm{Be}_{1}$ distance ($2 \cdot 72 \AA$) being too large to be considered an interatomic contact. The $\mathrm{Be}_{6}-\mathrm{Be}_{5}$ distance is $2 \cdot 46 \AA$.

The hole at the origin is bounded by $12 \mathrm{Be}_{2}$ atoms at a distance of $2.81 \AA$. This hole also appears in the CoAss_{3} structure, where it is bounded by 12 metalloid atoms at a distance varying from $3 \cdot 1 \AA$ in CoAs_{3} to $3.5 \AA$ in IrSb_{3}. The electron-to-atom ratios for the $\mathrm{Ru}_{3} \mathrm{Be}_{17}$ and CoAs_{3} structures are $2 \cdot 60$ and $2 \cdot 67$, respectively, based on Pauling's valences (1960) of 6 for $\mathrm{Ru}, 2$ for $\mathrm{Be}, 6$ for Co , and 1.56 for As.

We wish to thank Mr Vernon G. Silveira for the powder photography. We are also indebted to Dr William J. Ramsey for helpful discussions.

References

Busing, W. R. \& Levy, H. A. (1959). A Crystallographic Least Squares Refinement Program for the IBM 704. Oak Ridge National Laboratory Report 59-4-37.

Cruickshank, D. W. J. \& Robertson. A. P. (1953). Acte Cryst. 6, 698.
Ibers, J. A. (1957). Acta Cryst. 10, 86.
International T'ables for X-ray C'rystallography (1952). Vol. 1. Birmingham: Kynoch Press.
Kjekshus, A. \& Pedersen, G. (1961). Acta Cryst. 14, 1065.

Oftedal, 1. (1928). Z. Kristallogr. 66, 517.
Pauling, T. (1960). The Nature of the Chemical Bond. 3rd Edition. Ithaca: Cornell University Press.
Rosenqvist, T'.(1953). Acta Met. 1, 761.

Sands, D. E., dohnson, Q. C., Zalkin, A., Krikorian, O. H. \& Krom $\mathbf{~ \& ~}$ 832.

Sands, D. E., Zalkin, A. \& Krikorian, O. H. (1959). Acta Cryst. 12, 461.
Thomas, L. H. \& Umeda, K. (1957). J. Chem. Phys. 26, 293.

Zalkin, A., Sands, D. E. \& Krikorian, O. H. (1959). Acta Cryst. 12, 713.
Zhuravlev, N. N. \& Zhidanov, (i. S. (1956). Kristallografiya, 1, 509.

Refinement of the Crystal Structure of $\mathrm{Co}_{9} \mathbf{S}_{8}$

By S. Geller
Bell T'elephone Laboratories, Incorporated, Murray Hill, New Jersey, U.S.A.

(Received 1 March 1962)

Abstract

The structure of $\mathrm{Co}_{9} \mathrm{~S}_{8}$ has been refined in space group $O_{h}^{5}-F m 3 m$ by the least-squares technique applied to selected single-crystal data. The lattice constant of $\mathrm{Co}_{9} \mathrm{~S}_{8}$ is $9.928 \pm 0 \cdot 001 \AA$ and there are four $\mathrm{Co}_{9} \mathrm{~S}_{8}$ in the unit cell. There are two kinds of cobalt atoms in the structure: one is surrounded by a regular octahedron of sulfur atoms with $\mathrm{Co}-\mathrm{S}$ distance, $2 \cdot 39 \pm 0.03 \AA$; the other is surrounded by a tetrahedron of S atoms, one $C o-S$ distance being $2 \cdot 13 \pm 0 \cdot 02 A$, and the other three being $2.21 \pm 0.02 \AA$. Fach of the cobalt atoms with tetrahedral sulfur coordination is also linked to three similarly coordinated cobalt atoms at a distanco of $2.50 \pm 0.02 \AA$ which is essentially the Co-Co distance in the elementary cobalts. Some comparison is made with the $\mathrm{Kh}-\mathrm{S}$ coordination in $\mathrm{Rh}_{17} \mathrm{~S}_{15}$ and it is tentatively concluded that an anomaly exists in the apparent sizes of the octahedrally coordinated metal atoms.

Introduction

The crystal structure of $\mathrm{Co}_{9} \mathrm{~S}_{8}$ was solved by Lindqvist, Lundqvist \& Westgren (1936) from powder data. In their paper, Lindqvist et al. point out that several authors had proposed erroneous formulas for this compound or its isomorph pentlandite, (($\left.\mathrm{Ni}, \mathrm{Fe})_{9} \mathrm{~S}_{8}\right)$. Also Alsén (1925), assuming a formula of (Ni, Fe)S for pentlandite, had proposed an apparently erroneous structure.

As was pointed out in a recent paper on the structure of $\mathrm{Pd}_{17} \mathrm{Se}_{15}$ (Geller, 1962a), the interest in $\mathrm{Cog}_{9} \mathrm{~S}_{8}$ resulted from the possibility of a close relationship of its structure to that of the isostructural $\mathrm{Pd}_{17} \mathrm{Se}_{15}$ and $\mathrm{Rh}_{17} \mathrm{~S}_{15}$ crystals. This was particularly so because of the reported (.Juza et al., 1935) formula, $\mathrm{Rh}_{9} \mathrm{~S}_{8}$, for the latter compound. Because of some difficulty with the solution of the structures of $\mathrm{Pd}_{17} \mathrm{Se}_{15}$ and $\mathrm{Rh}_{17} \mathrm{~S}_{15}$, it was decided to check the $\mathrm{Cog}_{9} \mathrm{~S}_{8}$ structure with single-crystal data. The single-crystal material used in this analysis was very kindly given to us by I)r J. R. Stubbles*; it had resulted from his investigations on self-diffusion in $\mathrm{Co}_{9} \mathrm{~S}_{8}$.

In our study of the single-crystal data from $\mathrm{Co}_{9} \mathrm{~S}_{8}$, concluded that the structure proposed by Lindqvist

[^1]et al. was essentially correct. The refinement, however, gives a substantially different viewpoint on the Co-S interatomic distances.

Experimental

A slightly imperfect sphere of average diameter 0.28 mm . was made from the single-crystal material with the Bond (19\%1) sphere grinder. The crystal was aligned along [100] as rotation axis and a set of Weissenberg photographs* taken with Mo $K x$ radiation, for which the absorption coefficient, $\mu=164 \cdot 0$ $\mathrm{cm} .^{-1}, \mu R=2 \cdot 3$. A set of precession-camera photographs was also taken with Mo $K \chi$ radiation and [100] as precession axis. However only $h k 0$ and $h k 1$ intensities from the Weissenberg photographs (50 and 24 hr . exposures respectively) were estimated visually, by comparison with a calibrated intensity strip.

The diffraction symmetry of the crystal is $m 3 m$ with reflections $h k l$ present only when $h+k$ and $k+l$ are even. There are no further systematic absences. Thus the probable space groups are: $O_{h}^{5}-F m 3 m$, $\eta_{d}^{2}-F \overline{4} 3 m$ or $O^{3}-F 432$.

* Customarily, when using Mo $K x$ radiation, the author uses a three film pack with sheets of Cu foil interleaved resulting in a film:film intensity ratio of approximately 4:1.

[^0]: * This work was performed under the auspices of the U.S. Atomic Energy Commission.
 \dagger Present address: Department of Chemistry, University of Kentucky, Lexington, Kentucky, U.S.A.
 \ddagger Now employed with the Boeing Company, Seattle, Washington.

[^1]: * Now at the U'niversity of Manchester, England.

